MARK SCHEME for the October/November 2013 series

0652 PHYSICAL SCIENCE

0652/32

Paper 3 (Extended Theory), maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2013 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

	Page 2			Mark Scheme Syllabus					5	Paper							
					IGCS	SE – O)ctobe	er/Nov	embe	r 2013			0652			32	
1	(a)	(i)	87, 6 12, 3	67, 39, 32, 60,	3 – al 96 – a	l corre all corr	ect ±1 c ect (e	cm; cf);								[1] [1]	[2]
		(ii)	All p if line clear	ooints p e goes r smoo	olotted thro ((oth cur	correc 0,0) ; ve (ace	ctly to cept b	within best fit s	½ squ straigł	iare inc nt line if	luding (^r distand	(0,0), b ces = 1	ut allo 2, 20,	w 48 etc	c.);	[1] [1]	[2]
	(b)		Choi Use 210 ((Ans	ice of a of gra cm / s ² swer m	any two dient (or 2.1 ark ca	o corre 176 –1 m/s ² n only	ect poi 10) / (((acce _l be sc	ints e.g 0.80 – (pt 206 cored if	g. (10, 0) or u and ig answ	0) and use of <i>a</i> jnore si er lies t	(175,0.8 9 = (v – g. figs) petweel	80) ; <i>u) / t</i> ; ; n 200 a	and 21	0)		[1] [1] [1] [Tot a	[3] al 7]
2	(a)	F [−] , (3 c	Na⁺ orrec	, P ct symt	ools 1,	3 corr	ect ch	arges	1);							[2]	
	(b)	Fe ₂ 0	O ₃ ; (accept	t Fe ³⁺ 2	O ²⁺ 3)										[1]	
																[Tota	al 3]
3	(a)	boili	ng po	oint ind	crease	s (dow	vn the	group	/with a	atomic	number	r);				[1]	
	(b)	acce	ept a	ny nur	nber b	etwee	n –17(0 and -	-240 (actually	/ –189)					[1]	
	(c)	helin reco com ave	um o ogniti imen rage	r neon on onl t that a densit	(no ma y heliu averag y of Ne	ark) m and e dens e filled	l/or ne sity of balloo	eon are He bal on is gr	e less lloon l reater	dense f ess tha than ai	than air n densi r ;	∵; ity of a	ir OR			[1] [1] [Tot a	[2] al 4]
4	(a)	Wire Wire	e 1 na e 2 ai	amed <u>i</u> nd 3 di	<u>metal,</u> ifferent	(not G t <u>metal</u>	Group ⁻ I ;	1 nor H	lg) ;							[1] [1]	[2]
	(b)	Nee (not e,m <u>due</u>	edle n acce .f./vc <u>to</u> ju	noves ept flicl oltage inction	across <s t<br="" up="">produc s are a</s>	s dial c hen do ced (ao it a difi	or clea own); ccept (ferent	r the re current tempe	eading :) ; rature) chang s ;	es				[[1] [1] [+1]	[3]
	(c)	follo mea mea ope clea	ows ra asure asure rator rator ir link	apidly es high es temp remot c to spe	changi tempe beratur e from ecific ta	ing ten erature e at a therm ask (e.	nperat (igno point omete .g. ten	ture ; re ref t ; er/can nperatu	o low be lin ure ve	temp o ked to o ry high	r wide r comput <u>in engir</u>	range) er ; <u>ne</u>) ;	;		AN [Y 2 [+1]	[3]
																[Tota	al 8]

	Page 3			Mark Scheme Syllabus		Paper			
				IGCSE – October/November 2013	0652	32			
5	(a) (i) diar grap			diamond strong/covalent bonds or bonds in all directions ; graphite has layers which slide/weak bonds between layers ;					
		(ii)	diam	nond has no free electrons and/or graphite has free	electrons ;	[1]			
			in gr invol	aphite electrons are between layers and/or in diamond lyed in (strong) bonding ;	ond all electrons	[1]	[2]		
		(iii)	reco large	gnition of covalent/strong bonds (so similar mp) ; e amount of energy needed to separate atoms joined	d by covalent bor	[1] nds; [+1]	[2]		
			(Do Iowe	not allow either mark if the candidate states that gra er melting point/has much weaker bonds than diamo	phite has a much ond)	I			
	(b)	me little	thane e enei	e has weak forces <u>between molecules</u> ; rgy is needed to separate the molecules ;		[1] [1]	[2]		
	(c)	(i)	6CC one	$D_2 + 6H_2O \rightarrow C_6H_{12}O_6 + 6O_2$ mark for formulae ; one mark for balance ;		[2]			
		(ii)	ener abso	rgy carried by e.m. radiation ; orbed by the plant ;		[1] [1]	[2]		
						[Tota	I 12]		
6	(a)	(i)	Only	a fraction of incident wave is reflected/wave spread	ds out etc. ;	[1]			
		(ii)	4 1⁄2	squares × $0.05 \times 10^{-3} = 2.25 \times 10^{-4} \text{ s} (0.000225 \text{ s})$;		[1]			
		(iii)	dista = 34 (1 _c if	ance = $\frac{1}{2} \times 3 \times 10^8 \times 2.25 \times 10^{-4}$; 000 m (accept 33750 m); f $\frac{1}{2}$ missed leading to 68 000 m);		[1] [1]	[2]		
	(b)	(i)	<u>Use</u> f = 4	<u>of</u> $c = f\lambda$ ($\rightarrow f = 3 \times 10^8 / 7.5 \times 10^{-3}$); 1.0×10^{10} Hz;		[1] [1]	[2]		
		(ii)	Mob Note	ile phone communication/cooking/uhf radio commu e: Penalise power of ten error once only in the whole	unication etc. ; question.	[1]	[1]		
						[Tot	al 7]		
7	(a)	(i)	All p (one	oints, including (0,0) plotted to within one small squa e mark if one point only is missing.incorrect)	are ;	[2]			
		(ii)	smo	oth curve within one small square of each point ;		[1]			
	(b)	(bu turr	bble t ns clo	through) lime water ; udy/milky ;		[1] [1]	[2]		

	Page 4			Mark Scheme Syllabus F					
				IGCSE – October/November 2013	0652	32			
	(c)	(i)	all o	l of the hydrochloric acid had reacted ;					
		(ii)	RFM num (igno	vI CaCO ₃ = 100 ; nber of moles = 40 / 24 × 10 ³ ; nore power of ten for this mark, but not carry forward)					
			= 0.7	17 g;		[1]	[3]		
	(d)	line and	that I leve	is steeper than original and starts from (0,0) (to the ls at 40 cm ³ (same as original line) ;	left of original line	e); [1] [1]	[2]		
						[Tota	11]		
8	(a)	(i)	Tran Tran (acc (give	nsformer 1 step up/increases the voltage (for transmisformer 2 step down/decreases the voltage (for ho cept in correct reference to decrease/increase of cure 1 _c mark if both 'step up transformer and 'step down	nission) ; mes) ; rrent) n' are correct)	[1] [1]	[2]		
		(ii)	Less refei	s energy loss (in power lines) ; rence to lower current for same power ;		[1] [1]	[2]		
	(b)	(i)	good lattic in a elec	d conductor ; ce of positive ions (not accept if +ve ions move) ; sea of electrons ; trons free to move ;		[1] [1] [1] [1]	[4]		
		(ii)	Refe (Zer	erence to malleability of copper or increase strength to for reference to alloying) ;	of cable ;	[1]	[1]		
						[Tot	al 9]		
9	(a)	diag elec diag elec	gram ctrons gram ctrons	showing four shared electrons between two c s around the carbons ; showing two hydrogen atoms for each carbon ato s with the carbon atom ;	arbon atoms ar om, each sharing	nd 8 [1] two [1]	[2]		
	(b)	(i)	crac	king (accept thermal decomposition);		[1]			
		(ii)	high cata	temperature (not accept heat) ; lyst ;		[1] [1]	[2]		
	(c)	(i)	RFM mas	$M C_2H_4 = 28$ and RFM $C_2H_5OH = 46$; as of ethanol = 46 / 28 (= 1.6 kg);		[1] [1]	[2]		
		(ii)	ferm yeas adde (not one	nentation ; st ; ed to sugar (allow source of sugar e.g. grapes) ; allow 2 nd and 3 rd marks if the yeast is killed by high mark if in the presence of oxygen)	temperature, lose	[1] [1] [1]	[3]		

Page 5			5	Mark Scheme Syllabus				
		IGCSE – October/November 2013 0652				32		
10	(a)	 (i) The joining together of two <u>nuclei</u>; extra detail (e.g. the release of energy, small (light) nuclei, high energy collision); 					[2]	
		(ii)	radio micr then U.V. X-ra γ-ray visib neut	radio waves microwaves thermal (Heat), IR U.V. X-ray γ-rays visible radiation/light neutrinos/neutrons ;				
	(b)	(i)	((3.3	3434 × 2) – 6.6810) × 10 ⁻²⁷ = 0.0058 × 10 ⁻²⁷ kg = 5.8	8 × 10 ^{−30} kg ;	[1]	[1]	
		(ii)	E = 1 = 5.2	$mc^2 = (5.8 \times 10^{-30} \times (3 \times 10^8)^2)$ (Formula on its own 2 × 10 ⁻¹³ J;	gains the mark) ;	[1] [1]	[2]	
		(iii)	num 4 x 1 = 7.6	ber of reactions / s = power / energy of each reaction $10^{26}/5.22 \times 10^{-13}$; $67 \times 10^{38} (s^{-1})$;	on =	[1] [1]	[2]	
		Not	te: Pe	enalise power of ten error once only in the whole	e question.			

[Total 9]